Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Arch Biochem Biophys ; 748: 109772, 2023 10 15.
Article En | MEDLINE | ID: mdl-37820757

Dihydropyrimidine dehydrogenase (DPD) is an enzyme that uses an elaborate architecture to catalyze a simple net reaction: the reduction of the vinylic bond of uracil and thymine. Known DPDs have two active sites separated by approximately 60 Å. One active site has an FAD cofactor and binds NAD(P) and the other has an FMN cofactor and binds pyrimidines. The intervening distance is spanned by four Fe4S4 centers that act as an electron conduit. Recent advancements with porcine DPD have revealed unexpected chemical sequences where the enzyme undergoes reductive activation by transferring two electrons from NADPH to the FMN via the FAD such that the active form has the cofactor set FAD•4(Fe4S4)•FMNH2. Here we describe the first comprehensive kinetic investigation of a bacterial form of DPD. Using primarily transient state methods, DPD from E. coli (EcDPD) was shown to have a similar mechanism to that observed with the mammalian form in that EcDPD is observed to undergo reductive activation before pyrimidine reduction and displays half-of-sites activity. However, two distinct aspects of the EcDPD reaction relative to the mammalian enzyme were observed that relate to the effector roles for substrates: (i) the enzyme will rapidly take up electrons from NADH, reducing a flavin in the absence of pyrimidine substrate, and (ii) the activated form of the enzyme can become fully oxidized by transferring electrons to pyrimidine substrates in the absence of NADH.


Escherichia coli , NAD , Swine , Animals , NAD/metabolism , Dihydrouracil Dehydrogenase (NADP)/chemistry , Kinetics , Uracil , Mammals/metabolism , Oxidation-Reduction , Flavin-Adenine Dinucleotide/chemistry
2.
Biochemistry ; 62(9): 1497-1508, 2023 05 02.
Article En | MEDLINE | ID: mdl-37071546

Thioredoxin/glutathione reductase from Schistosoma mansoni (SmTGR) catalyzes the reduction of both oxidized thioredoxin and glutathione with electrons from reduced nicotinamide adenine dinucleotide phosphate (NADPH). SmTGR is a drug target for the treatment of Schistosomiasis, an infection caused by Schistosoma platyhelminths residing in the blood vessels of the host. Schistosoma spp. are reliant on TGR enzymes as they lack catalase and so use reduced thioredoxin and glutathione to regenerate peroxiredoxins consumed in the detoxification of reactive oxygen species. SmTGR is a flavin adenine dinucleotide (FAD)-dependent enzyme, and we have used the flavin as a spectrophotometric reporter to observe the movement of electrons within the enzyme. The data show that NADPH fractionally reduces the active site flavin with an observed rate constant estimated in this study to be ∼3000 s-1. The flavin then reoxidizes by passing electrons at a similar rate to the proximal Cys159-Cys154 disulfide pair. The dissociation of NADP+ occurs with a rate of ∼180 s-1, which induces the deprotonation of Cys159, and this coincides with the accumulation of an intense FAD-thiolate charge transfer band. It is proposed that the electrons then pass to the Cys596-Cys597 disulfide pair of the associated subunit in the dimer with a net rate constant of ∼2 s-1. (Note: Cys597 is Sec597 in wild-type (WT) SmTGR.) From this position, the electrons can be passed to oxidized thioredoxin or further into the protein to reduce the Cys28-Cys31 disulfide pair of the originating subunit of the dimer. From the Cys28-Cys31 center, electrons can then pass to oxidized glutathione that has a binding site directly adjacent.


Flavin-Adenine Dinucleotide , Schistosoma mansoni , Animals , Schistosoma mansoni/metabolism , Glutathione Reductase/metabolism , NADP/metabolism , Flavin-Adenine Dinucleotide/metabolism , Thioredoxin-Disulfide Reductase/metabolism , Glutathione/metabolism , Disulfides , Thioredoxins/metabolism , Oxidation-Reduction
...